

Assessment of Marine Sediments Adjacent to Fisherman Islands 2015

Document Control Sheet

BMT WBM Pty Ltd	Document:	R.B20259.015.02.PoB Marine Sediment.doc				
Level 8, 200 Creek Street Brisbane Qld 4000 Australia PO Box 203 Spring Hill 4004	Title:	Assessment of Marine Sediments Adjacent to Fisherman Islands 2015				
	Project Manager:	Darren Richardson				
Fax: + 61 7 3831 6744	Author:	Darren Richardson, Markus Billerbeck, Brad Hiles, Dan Moran				
ABN 54 010 830 421	Client:	Port of Brisbane Pty Ltd				
www.bmtwbm.com.au	Client Contact:	Nadene Perry				
	Client Reference:	B20259				
Synopsis: This rep the grain situated based on to the his	This report details the findings of a survey undertaken in July 2015 to determine the grain size composition of marine sediment of intertidal and subtidal banks situated to the south of Fisherman Islands. The survey methodologies were based on those used for previous surveys and the survey results are compared to the historic data to determine any broad-scale shifts in sediments.					

REVISION/CHECKING HISTORY

Revision Number	Date	Checked by		Issued by	
0	9 October 2015	CMJ		DLR	
1	20 October 2015	CMJ		DLR	
2	21 October 2015	CMJ	hom fr	DLR	Au

DISTRIBUTION

Destination		Revision									
	0	1	2	3	4	5	6	7	8	9	10
Port of Brisbane Pty Ltd	PDF	PDF	PDF								
BMT WBM File	PDF	PDF	PDF								
BMT WBM Library	PDF	PDF	PDF								

Copyright and non-disclosure notice

The contents and layout of this report are subject to copyright owned by BMT WBM Pty Ltd (BMT WBM) save to the extent that copyright has been legally assigned by us to another party or is used by BMT WBM under licence. To the extent that we own the copyright in this report, it may not be copied or used without our prior written agreement for any purpose other than the purpose indicated in this report.

The methodology (if any) contained in this report is provided to you in confidence and must not be disclosed or copied to third parties without the prior written agreement of BMT WBM. Disclosure of that information may constitute an actionable breach of confidence or may otherwise prejudice our commercial interests. Any third party who obtains access to this report by any means will, in any event, be subject to the Third Party Disclaimer set out below.

Third Party Disclaimer

Any disclosure of this report to a third party is subject to this disclaimer. The report was prepared by BMT WBM at the instruction of, and for use by, our client named on this Document Control Sheet. It does not in any way constitute advice to any third party who is able to access it by any means. BMT WBM excludes to the fullest extent lawfully permitted all liability whatsoever for any loss or damage howsoever arising from reliance on the contents of this report.

Executive Summary

The Port of Brisbane Pty Ltd (PBPL) has its main port infrastructure at Fisherman Islands, situated at the mouth of the Brisbane River on reclaimed lands. Previous studies have identified the potential for port reclamation works to cause localised changes to intertidal and subtidal habitats in the vicinity of Fisherman Islands. Such changes included modification of bed sediment characteristics and sedimentation processes through potential alterations to tidal current dynamics and the direction of freshwater flow from the Brisbane River.

The specific objectives of the present study were to:

- Identify and describe broad-scale spatial patterns in sediment grain size composition within the Fisherman Islands area;
- Describe temporal changes to sediment grain size composition within each site, based on data collected in the present study and previous studies in the Fisherman Islands area (WBM 1992, WBM 1998, BMT WBM 2010); and
- Discuss any evidence of changes to sediment grain size that may have resulted from Port of Brisbane activities.

A total of 37 sites were sampled in the present survey. The sampling methodology and site locations of the 2015 survey are consistent with methodologies used in previous studies undertaken by BMT WBM within the study area. Surface samples were collected using a van Veen grab, and analysed for particle size distribution (PSD) by sieve analysis (minimum sieve size = 0.075mm).

There was great variation in sediment particle size distribution among sites in 2015, but spatial patterns were generally consistent with the findings of previous studies. Areas with high mud content (>25%) were predominantly found in the deeper channel area west of St. Helena and Green Islands, at the mouth of the Boat Passage south of Fisherman Islands, within seagrass meadows east of Fisherman Islands, and an area adjacent to Fisherman Islands and south of the Future Port Expansion (FPE) seawall. The areas with higher mud content were located in quiescent areas and seagrass meadows, which provide conditions that promote the deposition and trapping of muds.

Sites located on the shoal extending east-west between the eastern margin of the FPE and St Helena Island consisted of well sorted fine to medium sands. This shoal is the remnant Brisbane River mouth. The shoals are exposed to prevailing north-easterly wind waves and currents, which operate together to prevent the settlement of muds.

Most sites displayed an overall trend of increasing mud proportion since 1992, but both the magnitude of change and timing of such changes varied in different parts of the study area. Areas located offshore of the Boat Passage entrance and the nearshore zone of Fisherman Islands have experienced increasing mud content over time. Major increases were observed at some sites between 2009 and 2014, and are highly likely due to fluvial mud inputs from major flooding in 2011 and minor flooding in 2013.

Many sites also displayed a long-term trend of increasing mud content. The more quiescent nearshore areas of Fisherman Islands represent a depositional environment, and will tend to slowly accumulate muds over long timeframes.

WBM (2000) predicted that the degree of impact on the patterns of flow around the FPE would be generally slight and confined predominantly to the truncation area outside the Moreton Bay Marine Park. The truncation and rounding of the southeastern corner was predicted to allow smooth unimpeded tidal flow to and from northern Waterloo Bay. Sampling undertaken at the north-east tip of Fisherman Islands (site 2) confirms that there have been no major temporal changes in sediment particle grain size at this location.

No consistent, major changes in mud content were observed over time on the sand bank extending between the FPE and St Helena Island. These shallow areas are exposed to local waves from the north east and tidal currents, which do not favour the settlement and/or trapping of muds.

Modelling results presented in WBM (2000) suggest the area around the southeast edge of the FPE seawall would experience a reduction in current velocities. Mud accumulation was observed at this location, however inter-annual changes in prevailing wind and wave climate will influence sediment patterns here in space and time.

Marine Sediment.doc

Contents

Exec	cutive	e Sumi	mary	i			
1	Introduction						
	1.1	Backg	round	1			
	1.2	Study	Aims and Objectives	1			
2	Meth	nodolo	ogy	3			
	2.1	Sampl	3				
	2.2	Particl	e Size Distribution (PSD) Analysis	3			
	2.3	Data A	Analysis	4			
3	Resu	5					
	3.1	Spatia	Il Patterns 2015	5			
		3.1.1	Patterns in Size Fractions	5			
		3.1.1.1	Muds	5			
		3.1.1.2	Fine Sand	5			
		3.1.1.3	Medium and Coarse Sand	5			
		3.1.2	Bulk Density	11			
	3.2	Tempo	oral Patterns	11			
4	Disc	ussio	22				
	4.1	Spatia	I Patterns	22			
	4.2	Tempo	oral Patterns	25			
	4.3	Influer	nce of the Port Operations	27			
5	Con	clusio	ns	28			
6	Refe	rence	S	29			
Арр	endix	A .	Sediment Log and Photographs	A-1			
Арр	endix	в	Temporal Patterns 1992-2015	B-1			
Арр	endix	C I	PSD Data 2015	C-1			

List of Figures

Figure 1-1	Sediment sampling sites used for comparison with historic data.	2
Figure 3-1	Distribution of muds (silts and clays <0.075mm) in 2015	7
Figure 3-2	Distribution of fine sand (0.075 to 0.15mm) in 2015	8
Figure 3-3	Distribution of medium sand (0.15 to 0.60mm) in 2015	9
Figure 3-4	Distribution of coarse sand (0.60 to 2.36mm) in 2015	10

Figure 3-5	Cumulative sediment mass passing each sieve size – sites 2 to 17	12
Figure 3-6	Cumulative sediment mass passing each sieve size – sites 18 to C	13
Figure 3-7	Cumulative sediment mass passing each sieve size – sites D to M	14
Figure 3-8	Cumulative sediment mass passing each sieve size – sites N to R	15
Figure 3-9	40.4% increase in the silt fraction at site 22 between 2009 and 2015	16
Figure 3-10	48.6% increase in the silt fraction at site 24 between 2009 and 2015	16
Figure 3-11	62.5% increase in the fine sand fraction at site 29 between 2009 and 2015	16
Figure 3-12	Percent change in proportion of muds (<0.075 mm) between 2009 and 2015	18
Figure 3-13	Temporal trends in muds – 1992 to 2015	19
Figure 3-14	Time-series plots of % muds in each category	20
Figure 3-15	Relationship between percentage mud (2015) and degree of temporal variability in percentage of mud (as expressed by coefficient of variation) at each site	21
Figure 4-1	Percentage of mud in Moreton Bay during 1997 and 2011, and percentage change over time (Reproduced from O'Brien <i>et al.</i> 2012)	23
Figure 4-2	Daily flow (cumecs) at Brisbane River (Savages Crossing) between 1992 and 2015 (Source: Bureau of Meteorology unpublished data).	26
Figure A-1	Sample photos – sites 2, 4, 5, 6, 7, 8, 9 and 11	A-4
Figure A-2	Sample photos (cont) – 12, 13, 16, 17, 18, 20, 21 and 22	A-5
Figure A-3	Sample photos (cont.) – 24, 26, 29, A, B, C, D and E	A-6
Figure A-4	Sample photos (cont.) – F, H, I, J, K, L, M and N	A-7
Figure A-5	Sample photos (cont.) – O, P, Q, R and 25	A-8
Figure B-1	Percent change in proportion of fine sand (0.075 mm to 0.15mm) between 2009 and 2015	B-2
Figure B-2	Percent change in proportion of medium sand (0.15mm to 0.60mm) between 2009 and 2015	B-3
Figure B-3	Percent change in proportion of coarse sand (0.60mm to 2.36mm) between 2009 and 2015	B-4

List of Tables

Table 2-1	Particle grain size fractions adopted in the present study	4
Table 3-1	Dominant particle size and classification of sediment in 2015 based on Folk and Ward	6
Table 3-2	Bulk Density Measurements and Corresponding Sediment Type	11
Table A-1	Sediment log	A-2

1 Introduction

1.1 Background

The Port of Brisbane Pty Ltd (PBPL) has its main port infrastructure at Fisherman Islands, situated at the mouth of the Brisbane River (Figure 1-1). The port facilities at the river mouth have been established on land reclaimed over a shallow sub-tidal river delta containing a series of low lying mangrove islands, collectively called the Fisherman Islands. Reclamation commenced in the late 1960's, and continued through the mid-1990s ('Superbund') and early 2000s (Future Port Expansion – FPE).

An investigation on the hydrodynamics and sedimentary characteristics (WBM 1992) and Impact Assessment Studies (WBM 2000) had identified the potential for port expansion works to cause localised changes to intertidal and subtidal habitats in the vicinity of Fisherman Islands. Such changes included modification of bed sediment characteristics and sedimentation processes through altering tidal current dynamics and the direction of freshwater flow from the Brisbane River.

An investigation conducted by WBM (1998) found minor shifts in sediment composition post construction of port reclamation works in the mid-1990s. Since completion of the seawall the Port of Brisbane has endeavoured to continue to examine the nature of sediments within the Waterloo Bay/Fisherman Islands area on a broad spatial scale. The most recent study occurred in 2009 (BMT WBM 2010) and showed that between 1992 and 2009, no major changes in broad-scale sediment patterns have occurred but that there have been some smaller scale changes in sediment distribution patterns.

The present study was commissioned by the PBPL and is a continuation of the BMT WBM (2010) study. It aims to catalogue spatial and temporal changes in the characteristics of bed sediments adjacent to Fisherman Islands through ongoing surveys of particle size distribution (PSD) of sediment.

1.2 Study Aims and Objectives

The broad aim of this investigation was to determine any notable changes in marine sediment composition since completion of the FPE seawall of the intertidal and shallow subtidal banks situated south to south west of Fisherman Islands. The specific objectives of this study were to:

- Identify and describe broad-scale spatial patterns in sediment grain size composition within the Fisherman Islands area;
- Describe temporal changes to sediment grain size composition within each site, based on data collected in the present study and previous studies in the Fisherman Islands area (WBM 1992, WBM 1998, BMT WBM 2010); and
- Discuss any evidence of changes to sediment grain size that may have resulted from the Port of Brisbane's activities.

Aerial Photography courtesy of NearMap	10	2	1		R
Fishern Island	B man ds A	e e e e e e e e e e e e e e e e e e e	5	6	
Port of Brisbane	E 7 F	8	9		
	1)	0	13	St	Helena sland
Boat Pass	16) ₹900 (K)		(18)		
	P Q	M N O 25			
	R	2	26)	Historic Sampling S sampled in 2015 not sampled in 20	Sites
Title: Sediment sampling sites used for	r comparison	with historic data	F	figure: 1-1	Rev:
BMT WBM endeavours to ensure that the information provided in thismap is correct at the time of publication. BMT WBM does not warrant, guarantee or make representations regarding the currency and accuracy of information contained in this map.		1 Approx. Scale	2km	WWW.bmtwbm	NBM .com.au
- Merson - 1.1620208 JERR Polt of Brisbane DERIDKG Mar	ine Geuiments 2015(EC	C_col_locela_warme_sediments	້າວິຂອງລີ	5.VY (JI	

2 Methodology

2.1 Sampling Design and Collection

The sampling methodology and site locations of the 2015 survey are consistent with methodologies used in previous studies undertaken by BMT WBM within the study area (WBM 1992, WBM 1998, BMT WBM 2010).

A total of 37 sites were sampled within the present survey (refer to Figure 1-1). Some sites previously sampled in 1992 and 1998 were not included within this survey or in the 2009 survey. These were sites 1, 3, and G that are now situated within the FPE reclamation area, and site S on the Brisbane River.

Location and navigation to sites was undertaken using a real time differential Global Positioning System (dGPS) to provide position-fixing accuracy's of ± 1 m. Precision was maintained among replicate samples at each site by verifying the site position on the dGPS system prior to each grab.

Sediment samples were collected using a stainless steel Van Veen grab with a surface gape of $0.028m^2$. Only whole grab samples (i.e. those in which the sampler jaws remained closed following the sample capture) were retained to reduce the loss of finer material. Sediment and any collected overlying waters were placed into a plastic sample tray. BMT WBM (2010) have determined that small-scale variability observed between duplicate samples collected at each site within the study area averaged 3-4% (±3%). To account for this small scale variation within sites at least three grabs were collected at each site. These replicate samples were then homogenised and a subsample of this material (weighing at least 2 kilograms) was transferred into pre-labelled plastic zip locked bags to provide a single representative sample at each site. The van Veen grab, sample trays and utensils were rinsed with seawater between samples to avoid cross contamination of samples.

During collection, samples were photographed, and the following details recorded on a standardised pro-forma (Appendix A):

- Sample weight;
- Sediment colour;
- Sediment odour;
- Plasticity;
- Field texture (i.e. fine sand, coarse sand, silts, shell fragments etc);
- % shell fragments present;
- Presence of organic material or any foreign objects; and
- Presence of any marine flora and fauna.

2.2 Particle Size Distribution (PSD) Analysis

Sediment samples were sent to Advanced Analytical Australia (AAA) for PSD analysis. Sediments were passed through a series of Australian standard sieves identifying particle size down to

0.075mm. A selection of six samples was chosen for further hydrometric analysis to determine particle size down to 1µm. This further analysis was undertaken to allow an estimation of the proportion of material within smaller size categories. Furthermore, sample moisture was also measured at all sites and particle density was measured at the six sites where hydrometric analysis was conducted. Sites for hydrometric analysis were chosen based on results of previous years to allow comparison of this data between sampling campaigns.

2.3 Data Analysis

PSD data from the present study and previous WBM studies were collated. Since PSD data from all studies were determined using the same Australian standard sieves, direct data comparisons can be made between studies.

The PSD results are described hereafter for the percentage composition of the particle size fractions shown in Table 2-1.

Size fraction	Sediment size
Muds	Grain size of less than 0.075 mm
Fine grain sand	Grain size of 0.075 mm to 0.15 mm
Medium grain sand	Grain size of 0.15 mm to 0.60 mm
Coarse grain sand	Grain size of 0.60 mm to 2.36 mm

 Table 2-1
 Particle grain size fractions adopted in the present study

Note that the fine gravel/shell grit size fraction (>2.36 mm) was only minor in the study area contributing only an average 0.35% of the sediments composition across all study sites. Therefore, the gravel fraction is not further considered within the context of this study.

Data were collated into GIS to illustrate the following spatial and temporal trends:

- Distribution of silt, fine sands, medium sands and coarse sand; and
- % change in proportion of silt and fine sand, medium sand and coarse sand material between each sampling episode.

Previous WBM (1998) study used different criteria to describe the bounds/limits for the various particle size fractions described in Table 2-1. The results presented here conform with more widely accepted methods for defining sediment fractions/classes and are consistent with BMT WBM (2010). Data from all years are based on the same sediment fraction classes to enable direct comparisons among years.

3 Results

Spatial patterns of the particle size fractions are illustrated for the 2015 investigation and temporal patterns are described by comparing the 2015 data to previous investigations at the same sites in 1992 (WBM 1992), 1998 (WBM 1998) and 2009 (BMT WBM 2010). Particle size analysis results and cumulative particle size distribution plots of the 2015, 2009, 1998 and 1992 data are given for all study sites in Appendix B and Appendix C, respectively.

3.1 Spatial Patterns 2015

Table 3-1 is a summary of the dominant sediment types recorded at each site. Based on Folk and Ward method, the mean sediment class at most sites were sands, and most sites were considered to be poorly sorted.

3.1.1 Patterns in Size Fractions

3.1.1.1 Muds

Figure 3-1 shows the distribution of muds (<0.075 mm). Areas with high mud content (>25%) were predominantly found in the deeper channel area west of St. Helena and Green Islands. Furthermore, relatively high mud content sediment was recorded in sediments at the mouth of the Boat Passage south of Fisherman Islands as well as an area adjacent to Fisherman Islands and south of the seawall.

Hydrometer analysis undertaken on samples from sites 6, 11, 16, O and P (refer Figure 3-1 and Appendix C) indicated an average clay content (<0.002 mm) was about 11% ranging between 6% measured at Site P and 20% at Site 6. Hydrometer analysis was not undertaken for Site B due to the relatively low proportion on fines at this location.

3.1.1.2 Fine Sand

The proportion of fine sands ranged between 1.3% and 69.5% across all locations. Similar to spatial patterns in muds, the highest proportion of fine sands was generally found in the deeper channel area west of St. Helena and Green Islands (Figure 3-2). Relatively high contents of fine sands >30% were also found in an area east of Fisherman Islands (sites E, 7, F, and I) within an area of moderate to dense *Zostera* and *Halophila* seagrass cover (BMT WBM 2013).

3.1.1.3 Medium and Coarse Sand

Medium sand was the dominant particle fraction within the study area. As noted above, the shoals extending between Fisherman Island, St Helena and Green Islands had the highest high proportion of medium sands (Figure 3-3).

Coarse sand fractions were uncommon in the study area and ranged between <1% to 6% (Figure 3-4). The highest proportion of coarse sand was recorded at Site 2 on near the northeast tip of the seawall, and sites 9 and 22 located on shoals in the eastern sector of the study area.

Site	D ₅₀	% Mud	Mean Classification	Sorting
2	242.0	18.3%	Fine Sand	Very Poorly Sorted
4	94.2	38.2%	Very Coarse Silt	Very Poorly Sorted
5	183.6	13.1%	Fine Sand	Poorly Sorted
6	<75	62.8%	Silt	Very Poorly Sorted
7	107.9	27.4%	Very Fine Sand	Very Poorly Sorted
8	181.8	5.0%	Fine Sand	Moderately Sorted
9	274.2	1.7%	Medium Sand	Moderately Well Sorted
11	162.1	26.5%	Very Fine Sand	Very Poorly Sorted
12	199.9	13.0%	Fine Sand	Poorly Sorted
13	79.1	44.6%	Silt	Very Poorly Sorted
16	128.8	31.3%	Very Fine Sand	Very Poorly Sorted
17	225.6	6.0%	Fine Sand	Moderately Sorted
18	44.4	54.5%	Coarse Silt	Very Poorly Sorted
20	186.7	11.1%	Fine Sand	Poorly Sorted
21	170.2	12.1%	Fine Sand	Poorly Sorted
22	<75	73.7%	Silt	Very Poorly Sorted
24	<75	90.1%	Silt	Very Poorly Sorted
25	131.1	22.8%	Very Fine Sand	Very Poorly Sorted
26	182.4	28.3%	Very Fine Sand	Very Poorly Sorted
26	94.3	25.9%	Silt	Poorly Sorted
А	193.6	4.0%	Fine Sand	Moderately Well Sorted
В	199.1	2.6%	Fine Sand	Moderately Well Sorted
С	204.1	3.6%	Fine Sand	Well Sorted
D	225.5	4.0%	Fine Sand	Moderately Well Sorted
E	134.2	23.0%	Very Fine Sand	Very Poorly Sorted
F	119.2	17.5%	Very Fine Sand	Poorly Sorted
Н	207.2	14.7%	Fine Sand	Poorly Sorted
I	128.7	16.3%	Fine Sand	Poorly Sorted
J	169.6	22.5%	Very Fine Sand	Very Poorly Sorted
К	184.8	16.2%	Fine Sand	Poorly Sorted
L	207.6	8.1%	Fine Sand	Poorly Sorted
М	195.9	13.8%	Fine Sand	Poorly Sorted
Ν	135.7	17.0%	Very Fine Sand	Poorly Sorted
0	158.0	20.1%	Very Fine Sand	Poorly Sorted
Р	184.5	18.5%	Fine Sand	Poorly Sorted
Q	85.8	41.7%	Silt	Very Poorly Sorted
R	194.6	14.7%	Fine Sand	Poorly Sorted

Table 3-1 Dominant particle size and classification of sediment in 2015 based on Folk and Ward

6

3.1.2 Bulk Density

Bulk density analysed for the six analysed samples ranged from 1.519 t/m³ to 1.741 t/m³ (Table 3-2). As expected, lower bulk density values were associated with higher silt content due to the higher proportion in pore space compared to coarser sediments. Correspondingly, samples with high bulk density values also had a higher proportion of sandy sediments.

Sample	Bulk Density (t/m³)	Silt (%)	Sands (%)	Gravel (%)
6	1.519	65.5	30.5	4
11	1.669	27.7	70.7	1.6
16	1.563	32.7	63.5	3.8
В	1.712	2.7	96.8	0.5
0	1.684	21	77.4	1.6
Р	1.741	19.3	79.4	1.3

 Table 3-2
 Bulk Density Measurements and Corresponding Sediment Type

3.2 Temporal Patterns

Cumulative frequency plots showing changes in particle grain size over time at each site are presented in Figure 3-5 to Figure 3-8. In terms of sites displaying major temporal changes in sediment grain size:

- Sites 22 (Figure 3-9) and 4 changed from fine sand dominated in 2009 to mud dominated in 2015
 - there was a 40.4% increase in mud at site 22
 - there was a 12.9% increase in mud at site 4
- Site 24 (Figure 3-10) was dominated by mud in both 2009 and 2015 however there was a 48.6% increase in mud between these years
- Site 29 (Figure 3-11), F, 7 and I changed from medium sand dominated in 2009 to fine sand dominated in 2015, with:
 - a 62.5% increase in fine sand at site 29
 - o a 22.5% increase in fine sand at site F
 - a 9.8% increase in fine sand at site 7
 - site I shifting to dominance of fine sand although there was only a small change in the proportion of this size fraction (7.9%) and the decrease in medium sand was minimal (-2%)
- Site 26 shifted to dominance by a more coarse sediment type, from fine sand in 2009 to medium sand in 2015.

Figure 3-5 Cumulative sediment mass passing each sieve size – sites 2 to 17

12

Figure 3-6 Cumulative sediment mass passing each sieve size – sites 18 to C

Figure 3-7 Cumulative sediment mass passing each sieve size – sites D to M

Figure 3-8 Cumulative sediment mass passing each sieve size – sites N to R

15

Figure 3-9 40.4% increase in the silt fraction at site 22 between 2009 and 2015

Figure 3-10 48.6% increase in the silt fraction at site 24 between 2009 and 2015

Figure 3-11 62.5% increase in the fine sand fraction at site 29 between 2009 and 2015

Figure 3-12 shows changes in mud content between 2009 and 2015, and Figure 3-13 shows trends in mud content within sites over time. Several sites showed notable changes in mud content over time, which can be classified as follows (Figure 3-13):

- Increase in mud between 2009 and 2015, but stable over time prior to 2009. This includes sites 4 (1992 = 23%; 1998 = 28%; 2009 = 27%; 2015 = 40%); 7 (1992 = 15%; 1998 = 12%; 2009 = 16%, 2015 = 29%), 29 (1992 = 6%; 2009 = 2%, 2015 = 27%), K (1998 = 5%; 2009 = 6%, 2015 = 17%), and 20 (1992 = 8%; 1998 = 4%; 2009 = 6%, 2015 = 12%).
- Higher mud content 2015 than other years, reversing the trend in previous years. This group of sites had a trend of decreasing mud content between 1992 and 2009, but in 2015 the trend reversed, with mud content higher in 2015. This includes sites 6 (1992 = 73%; 1998 = 56%; 2015 = 65%), 21 (1992 = 15%; 1998 = 12%; 2009 = 5%, 2015 = 13%), site 22 (1992 = 60%; 1998 = 44%; 2009 = 36%, 2015 = 77%), and site 24 (1992 = 65%; 1998 = 57%; 2009 = 45%, 2015 = 94%).
- Increase in mud between 2009 and 2015, continuing the trend observed in previous years. This group of sites experienced large increases in mud since monitoring commenced in 1992/1998, with moderate (≤5% increase) changes observed between 2009 and 2015 sampling episodes. This category includes sites 11 (1992 = 12%; 1998 = 22%; 2009 = 32%; 2015 = 28%), 16 (1992 = 18%; 1998 = 31%; 2009 = 30%; 2015 = 33%), 18 (1992 = 33%; 1998 = 61%; 2009 = 52%; 2015 = 57%), F (1998 = 5%; 2009 = 16%, 2015 = 18%), J (1998 = 11%; 2009 = 18%, 2015 = 23%), M (1998 = 6%; 2009 = 9%, 2015 = 14%), O (1998 = 10%; 2009 = 17%, 2015 = 21%), Q (1998 = 27%; 2009 = 42%, 2015 = 43%), R (1998 = 9%; 2009 = 14%, 2015 = 15%), H (1992 = 2%; 1998 = 14%; 2009 = 14%; 2015 = 15%).
- Decrease in mud between 2009 and 2015. This includes sites A (1992 = 1, 1998 = 2%; 2009 = 14%, 2015 = 4%), site B (1992 = 1, 1998 = 2%; 2009 = 14%, 2015 = 3%), site C (1998 = 2%; 2009 = 8%, 2015 = 4%), I (1998 = 13%; 2009 = 21%, 2015 = 17%).
- Progressive decrease in muds over time, but no major changes between 2009 and 2015. This includes site 17 (1992 = 12%; 1998 = 4%; 2009 = 7%; 2015 = 6%).

Most other sites showed little change in mud content over time. The exception to this was site 13, which had 59% mud in 2009 but 46-48% in all other years.

Figure 3-15 is a scatter-plot showing the relationship between the proportions of mud at each site in 2015 and the amount of variation over time in percentage of mud (as expressed by coefficient of variation – CoE). The scatter plot shows that sites with the highest degree of temporal variation in muds (i.e. CoE value >40%) tended to have a low proportion of muds (i.e. mud content <30%). Muddy sediments, therefore, tended to remain muddy over time, whereas some (but not all) sites with a higher proportion of sands tended to display a high degree of temporal variability in mud content.

Results

Figure 3-14 Time-series plots of % muds in each category

Figure 3-15 Relationship between percentage mud (2015) and degree of temporal variability in percentage of mud (as expressed by coefficient of variation) at each site

21

4 Discussion

4.1 Spatial Patterns

There was great variation in sediment particle size distribution among sites in 2015, but spatial patterns were generally consistent with the findings of previous studies conducted for the Port of Brisbane by WBM (1992, 1998, 2000) and BMT WBM (2010), as well as O'Brien *et al.* (2011) (Figure 4-1) and unpublished data from Dr Alastair Grinham (University of Queensland).

Sedimentation processes in the vicinity of Fisherman Islands are determined by a range of interacting hydrodynamic processes and the physical characteristics of the sediments involved. Key factors and considerations include (WBM 2000):

- Supply of sediment to the area, historically a mixture of sand and silt but now predominantly fine fluvial material brought during floods (primarily from the Brisbane River)
- The pattern of deposition of the fluvial supply at the river mouth, being direct deposition on the bar of any sand material and widespread dispersion of flood-borne fine silts
- Resuspension of the deposited sediments from time to time by the prevailing waves and currents, to be re-distributed to other areas
- Progressive accumulation of sediment in places where the supply is active but removal by resuspension and further dispersion is relatively less.

Sedimentation patterns and net movement of sediments in the Fisherman Islands area are dictated by the prevailing waves and currents. The study area is relatively sheltered from waves from the southeast to east by Green, St Helena and Mud Islands. Generally, the wave climate along the southern side of the study area is low (less than 0.5 metre) with corresponding low capacity for sediment resuspension from the bed. This is conducive to settling of fine silty material characteristic of that area. Areas with high mud content (>25%) were predominantly found in the following areas:

- The deeper channel area west of St. Helena and Green Islands WBM (2000) also found that this area had mixed and variable sediments, depending on tidal conditions, sediment supply and relict sub-surface sediments, which can be highly variable over time and space. Low rates of sand supply is thought be important in maintaining mud sediments in this area.
- Nearshore sheltered areas directly adjacent to Fisherman Islands WBM (2000) found that this area was significantly sheltered from waves by St Helena and Green Islands, and had low bed sheer stress. The sheltering effect results in low bed sheer stress, allowing fine sediments to settle onto the seafloor. Furthermore, accretion of fine sediments in this area may be facilitated by dense seagrass cover in this area, which can lead to a reduction of near-bed current velocities (WBM 1998, Orth *et al.* 2006). The FPE also provides partial protection of nearshore environments from dominant north-east winds and fluvial outflows from the Brisbane River, promoting suitable conditions for mud accumulation in these areas.

Discussion

Figure 4-1 Percentage of mud in Moreton Bay during 1997 and 2011, and percentage change over time (Reproduced from O'Brien *et al.* 2012)

Mouth of the Boat Passage south of Fisherman Islands – this area was found by WBM (2000) to experience moderate bed sheer stress, representing the principal flowpath to and from Boat Passage. While bed sheer would result in re-mobilisation of fine sediments, the high mud content recorded in this area in 2015 suggests that a significant mud source is currently present in this area (see further discussion below). The spatial patterns documented in the present study also suggest that fluvial outflows (flows) from the Brisbane River via Boat Passage have a strong influence on mud distribution in this area.

Sites located on the shoal extending east-west between the eastern margin of the FPE and St Helena Island (i.e. sites A, C, B, D, 8 and 9) had the lowest low mud content (<6%), and consisted of well sorted fine to medium sands. WBM (1998, 2000), citing Stephens (1992), suggested that the sandy deposits in this area were remnants of the original river mouth delta. The shoal experiences high current velocities and is exposed to wind waves from the north-east (WBM 2000). During high wind and wave events (including storms), fine sediment is resuspended and ultimately transported to more quiescent (i.e. sheltered and/or deeper) areas. This reworking of sediments prevents the permanent settlement of muds on the shoal, leaving higher sand content sediments (with occasional shell fragments) on the bed (WBM 1992).

Coarse sand and gravel does not represent a significant proportion of sediments at the sampling sites, reflecting both a lack of a significant supply of coarse material to this area, together with low bed sheer stress in more quiescent sections of the study area.

4.2 Temporal Patterns

Sediment particle size distribution displayed complex spatio-temporal patterns within the study area. Most sites displayed an overall trend of increasing proportion of muds since 1992, but both the magnitude of change and timing of such changes varied in different parts of the study area. In this regard (see Figure 3-13 and Figure 3-14):

- Eight sites (4, 6, 7, 29, K, 20, 21, 22 and 24) had relatively consistent proportion of mud between 1992 and 2009, but experienced an 8-49% increase in mud content (and lower sand content) between 2009 and 2015. Most of these sites were located offshore of the Boat Passage entrance, which is the area that experienced the largest change in muds between 2009 and 2015 (40-49% increase in mud content at sites 22 and 24).
- Ten sites (11, 16, 18, F, H, J, M, O, Q, R) displayed a long-term trend of increasing mud content since 1992/1998. These sites had a progressive accumulation of mud over time, including between 2009 and 2015 sampling episodes. The magnitude of change in muds between 2009 and 2015 (≤5%) was not as high as experienced at the sites listed in the paragraph above. All of these sites were also located offshore of Boat Passage entrance (including the channel south-west of St Helena Island), as well as the nearshore zone of Fisherman Islands.

These results are consistent with the findings of O'Brien *et al.* (2012), who documented large increases in proportion of muds in western and central Moreton Bay between 1997 and 2011 (Figure 4-1). They found that the largest changes occurred at the mouth of Brisbane River, as well as nearshore environments in southern Moreton Bay and Deception Bay. Only a small number of

sites were sampled by O'Brien *et al.* (2012) in the study area, but results were broadly consistent with the present study.

O'Brien *et al.* (2012) suggested that the January 2011 floods were a key driver of observed changes in muds between 1997 and 2011. As shown in Figure 4-2, the 2011 flood event was the largest by far in the period 1992-2015, although freshes and smaller flood events (e.g. 2013) during this period may also to sediment loading in the study area. Similar findings were reported for the 1974 flood, when five million tonnes of fluvial mud were washed downstream, producing a five metre thick blanket of pro-delta mud in sub-tidal areas (to about 10-15 m depth) of western Moreton Bay (Heckel *et al.* 1979; Jones and Stephens 1981).

The results described above (for sites 11, 16, 18, F, H, J, M, O, Q, R) suggest that there was also a long term increase in muds at many sites in the study area prior to the 2011 flood event. For these sites, the magnitude of change in the six year period between 2009 and 2015 (\leq 5%) was generally less than or similar to the magnitude of change between 1992 and 1998 sampling episodes (1-27% change, mean = 12.7%). WBM (2000) suggested that the net long term pattern in the quiescent nearshore environments of Fisherman Islands was one of slow progressive fluvial mud accretion, leading to the slow progression of the mangrove shoreline. The general patterns observed in the present study conform to this hypothesis.

Figure 4-2 Daily flow (cumecs) at Brisbane River (Savages Crossing) between 1992 and 2015 (Source: Bureau of Meteorology unpublished data).

No consistent, major changes in mud content were observed over time at the north-eastern tip of the FPE (site 2) or sites located on the sand bank extending between the FPE and St Helena Island (sites D, 8, 12, 5, 9, 13, 6). These shallow areas are exposed to local waves from the north east and tidal currents, and the presence of sand waves and large ripples indicate that these are active hydrodynamic environments. These areas also have no or sparse seagrass cover (BMT WBM 2014). Such conditions do not favour the settlement and/or trapping of fine sediment.

Sites A, B, C, I and 13 mud content declined between 2009 and 2015, but in the periods prior most of these sites experienced an increase in muds. All these sites were located on or adjacent to the sand shoal extending between Fisherman Islands and St Helena Island, or in deep waters immediately west of St Helena Island. A group of sites located offshore of Boat Passage also displayed a trend of decreasing mud content between 1992 and 2009, but in 2015 the trend reversed, with mud content higher in 2015 (sites 20, 21, 22 and 24). Site 17 (located east of the southern tip of Fisherman Islands) also displayed a trend of decreasing mud content over time, including in 2015. These sites are located on a broad shoal containing seagrass meadows, which vary in cover from year to year.

Inter-annual changes in prevailing wind and environmental conditions will have a strong influence on sediment deposition processes. For example, WBM (2000) found that in years when strong south-east winds prevailed, the tidal flats of Fisherman Islands can have sandier sediments due to remobilisation of silts. Other environmental processes, such as changes in seagrass cover (and associated sediment trapping), may also influence changes in sediment grain size over time.

4.3 Influence of the Port Operations

The FPE influences hydrodynamic conditions (and therefore the sedimentary environment) in the study area. The FPE has an effect of (i) diverting flood flows in a northerly direction into Moreton Bay, and (ii) partially sheltering nearshore areas from north-easterly winds prevailing in spring and summer (WBM 2000). BMT WBM (2014) suggested that these alterations to hydrodynamic conditions have favoured the expansion of seagrass meadows in northern sections of the study area.

WBM (2000) predicted that the degree of impact on the patterns of tidal currents around the FPE would be generally slight and localised. The truncation and rounding of the northeastern corner was predicted to allow smooth unimpeded tidal flow to and from northern Waterloo Bay, thereby minimising effects of currents, flushing and sedimentation. Sampling undertaken at the north-east tip of Fisherman Islands (site 2) confirms that there have been no major temporal changes in sediment particle grain size at this location.

Modelling results presented in WBM (2000) suggest the area around the southeast edge of the FPE seawall would experience a reduction in current velocities. Reduced current velocities were predicted to occur during ebbing and flooding tides during northerly wind/wave conditions, and under such conditions, deposition of silty material could be expected to occur. BMT WBM (2008) found that localised accumulation of muds near the south-eastern edge of the FPE seawall between 1992/98 and 2009 (i.e. sites A, B and F), consistent with these predictions. The present study found that Site F had similar mud content between 2009 and 2015, indicating a longer term trend of increasing fine sediment in this area. By contrast, the present study found that there was a reduction in mud content at sites A and B between 2009 and 2015, and had now returned to baseline (pre-2009) conditions. The different temporal patterns observed among sites in this area likely reflect differences in water depth and exposure to north-east waves. It is also possible that sampling error due to small-scale variability in sediments may be a factor here (and elsewhere in the study area (BMT WBM 2008).

5 Conclusions

- The results of the present study demonstrate that patterns in sediment grain size are dynamic, varying over time and space.
- There was great variation in sediment particle size distribution among sites in 2015, but spatial patterns were generally consistent with the findings of previous studies and previous modelling.
- Areas with high mud content (>25%) were predominantly found in the deeper channel area west of St. Helena and Green Islands, at the mouth of the Boat Passage south of Fisherman Islands, within seagrass meadows east of Fisherman Islands, and an area adjacent to Fisherman Islands and south of the FPE seawall.
- The areas with higher mud content were located in quiescent areas and within seagrass meadows, which provide conditions that promote the accretion of muds.
- Sites located on the shoal extending east-west between the eastern margin of the FPE and St Helena Island consisted of well sorted fine to medium sands. High bed shear stress is common in these shallow, exposed areas and wave action is expected to prevent the settlement of muds on these shoals.
- Most sites displayed an overall trend of increasing proportion of muds since monitoring commenced in 1992, but both the magnitude of change and timing of such changes varied in different parts of the study area.
- Areas located offshore of the Boat Passage entrance and the nearshore zone of Fisherman Islands have experienced increasing mud content over time.
- Major increases were observed at many sites between 2009 and 2014, and are highly likely due to fluvial mud inputs resulting from flooding in 2011.
- Many sites also displayed a long-term trend of increasing mud content. The more quiescent nearshore areas of Fisherman Islands represent a depositional environment, and will tend to slowly accumulate muds over long timeframes.
- No consistent, major changes in mud content were observed over time at the north-eastern tip of the FPE (i.e. the seawall truncation) or sites located on the sand bank extending between the FPE and St Helena Island. These areas are exposed to local waves from the north east and strong tidal currents, which do not favour the settlement and/or trapping of muds.
- Modelling results presented in WBM (2000) suggest the area around the southeast edge of the FPE seawall would experience a reduction in current velocities. Mud accumulation was observed in this area, however inter-annual changes in prevailing wind and wave climate will influence sediment patterns here in space and time.

6 References

BMT WBM (2009a) Ecological Character Description for the Moreton bay Ramsar Site. Report prepared on behalf of the Commonwealth Department of the Environment, Water, Heritage and the Arts and Queensland Environmental Protection Agency.

BMT WBM (2009b) FPE Seawall Ecological Assessment – Final Report. Report prepared for Port of Brisbane Corporation.

BMT WBM (2010) Assessment of Marine Sediments Adjacent to Fisherman Islands – Final Report. Report prepared for Port of Brisbane Corporation.

BMT WBM (2013) Port of Brisbane – Seagrass Monitoring Report 2013 – Final report. Report prepared for Port of Brisbane Corporation.

BMT WBM (2015) Port of Brisbane Maintenance Dredging - Sediment Quality Report 2014. Report prepared for Port of Brisbane Pty. Ltd.

Hekel H, Ward WT, Jones M, Searle DE (1979). Geological development of northern Moreton Bay. In: A. Bailey, and N.C. Stevens (Eds) Northern Moreton Bay Symposium: 7-18. Royal Society of Queensland: Brisbane.

Jones MR, Stephens AW (1981). Quaternary geological framework and resource potential of Moreton Bay. In: G.W. Hofmann (Ed) 1981 Field Conference, Brisbane-Ipswich Area: 17-23. Geological Society of Australia, Queensland Division

O'Brien K, Tuazon D, Grinham A, Callaghan D (2012) Impact of mud deposited by 2011 flood on marine and estuarine habitats in Moreton Bay. Healthy Waterways, Brisbane Australia. 61 pp.

Orth RJ, Carruthers TJB, Dennison WC *et al.* (2006) A Global Crisis for Seagrass Ecosystems. Bioscience 56, 987-996.

Stephens AW (1992). Geological Evolution and Earth Resources of Moreton Bay. In: Crimp, O. (ed). Moreton Bay in the Balance. Papers of the Symposium held by Australian Marine Science Consortium and Australian Littoral Society. Brisbane

WBM (1992) Marine Currents and Sediments near Fisherman Islands. Report prepared for Port of Brisbane Authority.

WBM (1993) Monitoring Programme – Effects of Port Extension on Sedimentation Patterns. Report prepared for Port of Brisbane Authority.

WBM (1998) Review of Potential Impacts Associated with Superbund Construction. Report prepared for Port of Brisbane Corporation.

WBM (2000) Port of Brisbane – Port Expansion Impact Assessment Study. Report prepared for Port of Brisbane Corporation.

Wentworth CK (1922) A Scale of Grade and Class Terms for Clastic Sediments. Journal of Geology 30: 377-392.

Appendix A Sediment Log and Photographs

Site No.	Date	Time	Colour	Odour	Palasticity	Field Texture	% Shell	% Seagrass	% Macroalgae	% Organics/biota
2	23/07/15	9:19	Dark grey	Normal	Low	Coarse sand	5	0	0	0
6	23/07/15	9:42	Dark grey	Normal	Low with some moderate globs (clay)	Soft muddy sand	2	0	0	0
5	23/07/15	9:54	Dark grey	Normal	None-low	Fine sand	2	0	0	1
4	23/07/15	10:11	Dark grey	Normal	Low-moderate	Fine sand	5	0	1	0
Н	23/07/15	10:22	Dark grey	Normal	None-low	Fine sand	3	0	0	6
D	23/07/15	10:37	Dark grey	Normal	None	Stiff fine sand	2	3	0	0
9	23/07/15	11:01	Yellow/grey	Norma	None	Sand	4	0	0	0
13	23/07/15	11:15	Dark grey	Normal	Moderate with some high globs	mud	0	0	5	3
18	23/07/15	11:28	Dark grey	Normal	Moderate with some high globs	Soft mud	7	0	0	5
22	23/07/15	11:38	Dark grey	Normal	Low-moderate with some high globs	Soft mud	5	0	0	0
26	23/07/15	12:02	Brown/grey	Normal	Low-moderate	Soft mud	5	0	0	0
29	23/07/15	12:19	Dark grey	Normal	low with some moderate- high globs	Muddy sand	5	0	0	0
25	23/07/15	12:38	Dark grey	Normal	None	Sandy mud	2	5	0	0
21	23/07/15	12:56	Dark grey	Normal	None	Sandy mud	2	2	0	0
17	23/07/15	13:12	Dark grey	Normal	None	Fine sand	5	30	0	5
12	23/07/15	13:26	Dark grey	Normal	None	Moderate-firm sand	3	7	0	1
I	23/07/15	13:42	Dark grey	Normal	None	Firm sand	2	15	0	23
F	23/07/15	13:52	Dark grey	Normal	None	Firm sand	7	30	0	4
7	23/07/15	14:02	Dark grey	Normal	None	Firm sand with globs	2	40	0	1

Table A-1 Sediment log

Sediment Log and Photographs

Site No.	Date	Time	Colour	Odour	Palasticity	Field Texture	% Shell	% Seagrass	% Macroalgae	% Organics/biota
						of soft mud				
E	23/07/15	14:09	Dark grey	Normal	Low	Soft muddy sand	0	60	0	2
А	23/07/15	14:12	Yellow/brown	Normal	None	Firm sand	3	3	1	0
В	23/07/15	14:23	Brown/grey	Normal	None	Firm sand	7	10	1	2
8	23/07/15	14:33	Dark grey	Normal	None	Firm sand	9	25	2	0
С	23/07/015	14:48	Dark grey	Normal	None	Firm sand	5	3	1	2
24	24/07/15	9:30	Dark grey	Normal	High	Soft mud	1	0	0	0
R	24/07/15	10:30	Dark grey	Normal	None	Soft sand held together by seagrass roots	15	20	0	7
0	24/07/15	11:20	Dark grey	Slight anoxic	None	Soft muddy sand	5	25	0	0
М	24/07/15	11:32	Dark grey	Slight anoxic	None	Muddy sand	5	30	0	5
N	24/07/15	11:43	Dark grey	Normal	Low	Sandy mud	3	2	0	8
L	24/07/15	11:55	Dark grey	Slight anoxic	None	Sandy mud	4	15	3	5
J	24/07/2015	12:06	Dark grey	Normal	None	Sandy mud	1	20	0	5
11	24/07/2015	12:20	Dark grey	Slight anoxic	None	Sandy mud	2	20	0	5
16	24/07/15	12:41	Dark grey	Slight anoxic	Low	Soft muddy sand	12	25	0	5
K	24/07/15	12:57	Dark grey	Anoxic	None	Sandy mud	0	30	0	10
20	24/07/15	13:11	Dark grey	Anoxic	None	Sandy mud	3	25	0	10
Q	24/07/15	13:28	Dark grey/brown	Normal	Low	soft mud	0	15	0	3
Р	24/07/15	13:37	Dark grey/brown	Slight anoxic	None	sandy mud	2	20	0	5

Figure A-1 Sample photos – sites 2, 4, 5, 6, 7, 8, 9 and 11

Figure A-2 Sample photos (cont) – 12, 13, 16, 17, 18, 20, 21 and 22

Figure A-3 Sample photos (cont.) – 24, 26, 29, A, B, C, D and E

Figure A-4 Sample photos (cont.) – F, H, I, J, K, L, M and N

G:\Admin\B20259.g.dlr_PoB Monitoring\16. Reports Issued to PBPL\R.B20259.015.02.PoB Marine Sediment.doc

Figure A-5 Sample photos (cont.) – O, P, Q, R and 25

Appendix B Temporal Patterns 1992-2015

Appendix C PSD Data 2015

C.1 PSD Plots (Sieve)

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION Client : Advanced Analytical Australia Report No. : R18217 Address : PO Box 153, Hamilton 4007 Job No. : 1529881 Project : **Delivered Samples** Reg'n No. : 15301895 AAA Lab. ID : 2 23/07/2015 Project Ref. : A15/3936/1 Date Received : 31-Jul-15 Sampled By : Clients Rep. SIZE FRACTIONS AS PER AUSTRALIAN STANDARDS AS 1726 Fine Sand Medium Sand Coarse Sand Fine Gravel Medium Gravel Coarse Gravel Cobbles 100 Sieve Percent Size Passing (mm)90 150 75 80 37.5 70 19.0 Percentage Finer 60 9.5 4.75 50 2.36 100.0 40 1.18 98.8 0.600 94.0 30 0.425 77.3 20 0.300 56.6 10 0.150 35.2 0.075 19.1 0 0.425 0.075 0.150 0.300 0.600 2.36 4.75 9.5 19.0 1.18 37.5 75 Particle Size (mm) Remarks : Test Procedure : AS 1289 3.6.1 Prepared by : M Checked by

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory

NATA

h 10/3/15 Senior Technical Officer

Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION

Client : Address Project :	:	Advan PO Bo Delive	ced A x 15: red S	Analytica 3, Hamilt amples	l Australia on 4007	ĝ	Report No. : R18218 Job No. : 1529881 Reg'n No. : 15301896 Project Ref. : A15/3936/2				
AAA Lab	. ID :	4 23/0)7/20	15			Project	Ref. :	A15/3936	5/2	
							Date Re	eceived :	31-Jul-15		
							Sample	d By :	Clients R	ер.	
					SIZE FRACTI	ONS AS PEI	R AUSTRAL	IAN STANDAF	RDS AS 1726	3	
Sieve	1	1	100	Fine Sand	Medium Sand	Coarse Sand	Fine Gravel	Medium Gravel	Coarse Gravel	Cobbles	
Size	Percent							-			
(mm)	Passing										
(11111)			90	1							
150										-	
										-	
75			80	1							
07.5											
37.5			70					-			
10.0											
19.0		5									
0.5		ine	60							-	
9.0		je F									
4 75		Itaç					-				
4.70		.cer	50		100						
2 36	100.0	Per									
2.00	100.0		40								
1.18	99.7		40								
0.600	99.2		30							-	
0.425	96.9						-				
			20								
0.300	89.3										
0.150	70.6		10								
0.075	39.9		0								
			L T	00	25	8	36	0.5	.5	75	
				0.1	0.31 0.4	Υ	0 4	5, 5,	37	13	
						2					
						Par	ticle Size (mi	m)			
emarks	•										
est Proc	edure ·			AS 1289	361			_			
repared	by: wh		/	10 1200	0.0.1	Checker	by gr	~			
spureu	~J . 144					Checked	wy. 41/	2			

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory

MATA

Mh 10/8/15

Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION

Client : Address Project : AAA Lab	dress : PO Box 153, Hamilton 4007 ject : Delivered Samples A Lab. ID : 5 23/07/2015 SIZE FRACTION Fine Sand Medium Sand								Job No. : 152 Reg'n No. : 153 Project Ref. : A19 Date Received : 31- Sampled By : Clie PER AUSTRALIAN STANDARDS A				R18 152 153 A15 31- Clie	219 9881 0189 /3936 Jul-15 nts R	7 5/3 6 ep.
			1	Fine Cood	SIZE	FRAC	LIONS	S AS PE	R AU	STRAL	AN S	TANDA		S 1720	3
Sieve Size (mm)	Percent Passing		100		Met		COE	arse Sand	Fine	Gravei	Medi	um Gravel	Coarse	Gravel	Cobbles
150			90												
75			80		+										
37.5			70												
19.0		10													
9.5		je Fine	60		1										
4.75		centag	50				_		-						
2.36	100.0	Per													
1.18	99.8		40				-								
0.600	99.5		30												
0.425	98.5		20	/											
0.300	92.6		20												
0.150	32.5		10												
0.075	13.6		0								-				
			0.075	0.150		0.425	0.600	1.18	2.36	4.75	5.6			c. /c	75
								Par	ticle S	Size (mr	n)				
emarks	:														
est Proc	edure :		ŀ	AS 1289	3.6.1	1				0					
repared	by: N	14					C	hecked	by :	an	0				

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory

10/3/13

Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION

Client : Address Project : AAA Lab	: . ID :	Advan PO Bo Delive 7 23/0	ced A ox 153 red S 07/20	Analytical 3, Hamilto amples 15	Australia on 4007		Report I Job No. Reg'n N Project Date Re Sample	No. : : Ref. : eceived : d By :	R18221 1529881 15301899 A15/3936/5 31-Jul-15 Clients Rep.		
			ſ	Fine Sand	IZE FRACTI	ONS AS PEI			RDS AS 17:	26	
Sieve Size (mm)	Percent Passing		100					Inequality Craves	Coalse Grave		
150								-			
75			80								
37.5			70								
19.0		5									
9.5		ge Fine	60								
4.75		centag	50								
2.36	100.0	Per						1			
1.18	99.4		40								
0.600	99.2		30								
0.425	98.7		20								
0.300	96.1		20								
0.150	69.4		10								
0.075	28.6		0								
			10.0	0.150	0.300 0.425	1.18	2.36	9.5	37.5	75	
						Par	ticle Size (mi	m)			
emarks	:										
est Proc	cedure :	,	1	AS 1289	3.6.1		<i>(h)</i>				
repared	by: Mr	٢				Checked	by: 📎	R			

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory

11h 10/3/15

Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION

Client : Address Project : AAA Lab	: . ID :	Advand PO Bo Deliver 8 23/0	ced A k 153 ed S 7/20	Analytical 3, Hamilto amples 15	Australia on 4007		Report Job No. Reg'n N Project Date Re Sample	No. : .: No. : Ref. : eceived : ed By :	R18222 1529881 15301900 A15/3936/6 31-Jul-15 Clients Rep.		
			[Fine Sand	SIZE FRACTI	ONS AS PEI	R AUSTRAL	IAN STANDAR	RDS AS 1726 Coarse Gravel	Cobbles	
Sieve Size (mm)	Percent Passing		100		1						
150			90								
75			80								
37.5			70								
19.0		5									
9.5		ge Fine	60								
4.75		rcenta	50								
2.36	100.0	Ре	40								
1.18	98.5		10								
0.600	98.2		30								
0.425	97.6		20								
0.300	94.5										
0.150	32.9		10				-				
0.075	5.3		0	c 0	25	 } ∞	36	.5	ç. 10	5	
			Ċ	0.15	0.30	} ⊊ Par	N 4 ⁴ ticle Size (m	ۍ مې m)	37	2	
emarks est Proc	: cedure :		,	AS 1289	3.6.1	1	CH.				
repared	by: M					Checked	by: J	P			

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory

Mh 10/8/15

Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION Client : Advanced Analytical Australia Report No. : R18223 Address : PO Box 153, Hamilton 4007 Job No. : 1529881 Project : **Delivered Samples** Reg'n No. : 15301901 AAA Lab. ID : 9 23/07/2015 Project Ref.: A15/3936/7 Date Received : 31-Jul-15 Sampled By : Clients Rep. SIZE FRACTIONS AS PER AUSTRALIAN STANDARDS AS 1726 Fine Sand Medium Sand Coarse Sand Fine Gravel Medium Gravel Coarse Gravel Cobbles 100 Sieve Percent Size Passing (mm)90 150 75 80 37.5 70 19.0 Percentage Finer 60 9.5 4.75 50 2.36 100.0 40 1.18 98.8 0.600 94.6 30 0.425 78.3 20 0.300 57.0 10 0.150 3.2 0.075 1.8 0 0.425 4.75 9.5 0.075 0.150 0.300 0.600 2.36 19.0 37.5 75 1.18 Particle Size (mm) Remarks : Test Procedure : AS 1289 3.6.1 Prepared by : W Checked by :

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory

Mh 10/8/15

Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone: (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION

Client : Address Project : AAA Lab	: 9. ID :	Advanc PO Box Delivera 12 23/0	ed A (153 ed S ()7/2(Analytica 3, Hamil amples 015	al Aus ton 4	stralia 007			Report Job No Reg'n N Project Date R Sample	No. : No. : Ref.: eceived ed By :	d :	R18 1529 1530 A157 31-J Clier	225 9881 01903 /3936 ul-15 nts R	3 5/9 6 ep.
			1	Fine Sand	SIZE	FRACT	IONS AS Coarse Sa	PER	AUSTRAL	IAN ST	ANDAF m Gravel	Coarse	6 1726 Gravel	6 Cobbles
Sieve Size (mm)	Percent Passing		100			r								
150			90											
75			80											
37.5			70								_			
19.0		- La			1							91- 		
9.5												1		
4.75		centaç	50											
2.36	100.0	Per												
1.18	99.3]	40											
0.600	99.0		30											
0.425	97.2	1	20		1									
0.300	84.0		20											
0.150	25.9	1	10					-111						
0.075	13.6	1	0											
		e	0.075	0.150		0.300	0.600		2.36	9.5	007		C. / S	75
								Partio	cle Size (m	ım)				
emarks														
est Pro reparec	cedure : by : m		,	AS 1289	9 3.6.	1	Chec	ked	by: D	þ				
araditad	for complian			17005		~				0	/			

THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

. Nick Farrer Approved Signatory

NATA

1m 10/8/15 Senior Technical Officer

NATA Accred. No.: 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION

Client : Address Project : AAA Lab	: . ID :	Advand PO Bo Deliver 13 23/	ced / x 153 red S 07/2	Analytical 3, Hamilto amples 015	Australia on 4007		Report Job No. Reg'n N Project Date Re Sample	No. : lo. : Ref.: eceived : d By :	R18226 1529881 15301904 A15/3936 31-Jul-15 Clients R	4 5/10 ; ep.
				S Fine Sand	Medium Sand	ONS AS PEI	R AUSTRAL	Medium Gravel	RDS AS 1726 Coarse Gravel	6 Cobbles
Sieve Size (mm)	Percent Passing		90	1	\square					
150										
75			80							
37.5			70							
19.0										
9.5		je Fine	60							
4.75		centaç	50							
2.36	100.0	Per								
1.18	99.9		40							
0.600	99.9		30							
0.425	99.8		20							
0.300	99.4		20							
0.150	91.4		10							
0.075	46.5		0							
				c/U.U 0.150	0.300 0.425	1.18	2.36	9.5	37.5	75
						Par	ticle Size (m	m)		
emarks est Proc	: edure :			AS 1289	3.6.1		01			
repared	by: M					Checked	by:	P		

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory Mm 10/8/15

Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

Client : Address Project : AAA Lab	: . ID :	Advanced PO Box 1 Delivered 17 23/07	l Analytica 53, Hamilt Samples /2015	l Australia on 4007		Report Job No. Reg'n N Project Date Re	No. : : lo. : Ref.: eceived :	R18228 1529881 1530190 A15/3936 31-Jul-15	6 5/12
						Sample	d By :	Clients R	ер.
				SIZE FRACTI	ONS AS PEF	R AUSTRALI	AN STANDAR	RDS AS 1720	6
Sieve Size (mm)	Percent Passing	100	Fine Sand	Medium Sand	Coarse Sand	Fine Gravel	Medium Gravel	Coarse Gravel	Cobbles
150		90)						
75		80							
37.5									
19.0		70							
9.5		Einer Piner	,						
4.75		entage				-			
2.36	100.0	Perc					-		
1.18	99.3	40							
0.600	98.9	30							
0.425	95.7					2			
0.300	75.2	20					-	-107	
0.150	14.0	10							
0.075	6.3	0							
			0.075	0.300 0.425	۳ ۲ Parl	icle Size (mr	n)	37.5	75
Remarks	: cedure :		AS 1289	361		- 1			
Prepared	by: M				Checked	by:	0		

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory

Mh 10/3/15

Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION

Client : Address Project : AAA Lab	: o. ID :	Advanced PO Box 15 Delivered 3 18 23/07/2	Analytical 3, Hamilto Samples 2015	Australia on 4007		Report Job No Reg'n N Project Date Re Sample	No. : No. : Ref.: eceived : ed By :	R18229 1529881 1530190 A15/3936 31-Jul-15 Clients R	7 5/13 5 ep.
			Fine Sand	Medium Sand	Coarse Sand	R AUSTRAL	Medium Gravel	RDS AS 1726 Coarse Gravel	6 Cobbles
Sieve Size (mm)	Percent Passing	100			_				
150									
75		80							
37.5		70							
19.0		5							
9.5		09 Ein							
4.75		centaç							
2.36	100.0	-Bei							
1.18	97.2	40							
0.600	96.5	30							
0.425	96.0	20							
0.300	94.8								
0.150	82.9	10							
0.075	56.9	0							
			0.075	0.300 0.425 0.600	Par	ticle Size (m	m)	37.5	75
Remarks Test Proc	cedure :		AS 1289	3.6.1	Chooker	hy: Cit			

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer

Approved Signatory

Mh 10/8/13

Senior Technical Officer NATA Accred. No. : 1961

Cobbles

BRISBANE LABORATORY ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone: (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION

Client : Advanced Analytical Australia Report No. : R18230 Address : PO Box 153, Hamilton 4007 Job No. : 1529881 Project : **Delivered Samples** Reg'n No. : 15301908 AAA Lab. ID : 20 24/07/2015 Project Ref.: A15/3936/14 Date Received : 31-Jul-15 Sampled By : Clients Rep. SIZE FRACTIONS AS PER AUSTRALIAN STANDARDS AS 1726 Fine Sand Medium Sand Coarse Sand Fine Gravel Medium Gravel Coarse Gravel 100 Sieve Percent Size Passing (mm)90 150 75 80 37.5 70 19.0 Percentage Finer 60 9.5 4.75 50 2.36 100.0 40 1.18 99.8 0.600 99.4 30 0.425 96.3 20 0.300 84.1 10 0.150 34.3 0.075 11.6 0 0.425 4.75 0.075 0.300 0.600 2.36 9.5 19.0 0.150 37.5 1.18 Particle Size (mm) Remarks :

Test Procedure : Prepared by : M AS 1289 3.6.1

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

NAT Nick Farrer Approved Signatory

Checked by

Mh 10)

Senior Technical Officer NATA Accred. No.: 1961

75

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION

Client : Address Project : AAA Lab	: . ID :	Advand PO Bo Deliver 21 23/	ced A x 153 red S 07/20	Analytical 3, Hamilto amples 015	Australia n 4007		Report Job No. Reg'n N Project Date Re Sample	No. : : lo. : Ref.: eceived : d By :	R18231 1529881 1530190 A15/3936 31-Jul-15 Clients R	9 5/15 6 ep.
			[S Fine Sand	IZE FRACTI Medium Sand	Coarse Sand	R AUSTRAL	Medium Gravel	Coarse Gravel	6 Cobbles
Sieve Size (mm)	Percent Passing		100		1					
150			30							
75			80							_
37.5			70							
19.0		- La						-		
9.5		ge Fin	60							
4.75		rcenta	50							
2.36	100.0	Ъе	40							
1.18	99.5		40							
0.600	98.9		30							
0.425	96.3		20							
0.300	86.6									
0.150	41.8		10							
0.075	12.7		0	~ ~ ~	S 0		ω <u>υ</u>		<u>م</u> ر	
				0.15	0.30 0.42 0.60	Par	ticle Size (mi	जं व् m)	37	7.
Remarks est Proc	: edure :			AS 1289 :	3.6.1					
repared	by: M					Checked	by: De	0		

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory

Mm 10/8/15

Senior Technical Officer NATA Accred. No. : 1961

. .

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION

Size roc norse Grave Medium Grave Coarse Grave Coable Size roc norse Grave Medium Grave Coarse Grave Coable 150 100 1	Client : Address Project : AAA Lab	: . ID :	Advand PO Bo Deliver 22 23/	ced / x 15: red S 07/2	Analytical 3, Hamilto amples 015	Austr	ralia)7		DED	Report Job No Reg'n I Project Date R Sample	No. : No. : Ref.: eceived : ed By :	R18232 1529881 1530191 A15/393 31-Jul-1 Clients F	0 6/16 5 Rep.
Sieve Size (mm) Percent Passing 150				1	Fine Sand		m Sand	Coarse S	and	Fine Gravel	Medium Gravel	Coarse Gravel	Cobbles
150	Sieve Size (mm)	Percent Passing		100 90									
75 1 37.5 1 19.0 1 9.5 1 4.75 1 2.36 100.0 1.18 95.2 0.600 94.5 0.425 94.1 0.300 93.7 0.150 92.6 0.075 76.9	150												
37.5	75		1	80		-							
19.0	37.5		1			-							
9.5 1 4.75 1 2.36 100.0 1.18 95.2 0.600 94.5 0.425 94.1 0.300 93.7 0.150 92.6 0.075 76.9 Particle Size (mm)	19.0			70									
4.75 100.0 1.18 95.2 0.600 94.5 0.425 94.1 0.300 93.7 0.150 92.6 0.075 76.9 Particle Size (mm)	9.5		Finer	60									
2.36 100.0 1.18 95.2 0.600 94.5 0.425 94.1 0.300 93.7 0.150 92.6 0.075 76.9 0.600 94.5 0.800 94.5 0.800 93.7 0.800 93.7 0.800 92.6 0.755 76.9 0.800 92.6 0.800 92.6 0.800 92.6 0.800 92.6 0.800 92.6 0.800 92.6 0.800 92.6 92.6 92.6 93.7 92.6 94.1 92.6 92.6 92.6 92.6 92.6 92.6 92.6 92.6 92.6 92.6 92.6 92.6 92.6 92.6 92.6 92.6 92.6 92.6 92.6 92.6 92.6 92.7 92.6	4.75		entage	50									
1.18 95.2 0.600 94.5 0.425 94.1 0.300 93.7 0.150 92.6 0.075 76.9 Particle Size (mm)	2.36	100.0	Perce	50		-							
1.110 00.12 0.600 94.5 0.425 94.1 0.300 93.7 0.150 92.6 0.075 76.9 0.075 76.9 Particle Size (mm)	1 18	95.2		40									
0.425 94.1 0.300 93.7 0.150 92.6 0.075 76.9 0	0.600	04.5		20									
0.425 94.1 0.300 93.7 0.150 92.6 0.075 76.9 Verticle Size (mm)	0.600	94.5		30									
0.300 93.7 0.150 92.6 0.075 76.9 0.075 76.9 0.075 76.9 0.075 76.9 0.075 76.9 0.075 76.9 0.075 76.9 0.075 76.9 0.075 8.9 0.075 9.9 0.075 8.9 0.075 8.9 0	0.425	94.1		20									
0.150 92.6 0.075 76.9 0.075 76.9 0.075 76.9 0.075 76.9 0.075 76.9 0.075 76.9 0.075 76.9 0.075 8.0 0.05	0.300	93.7											
0.075 76.9 0 52 00 81 98 52 53 00 12 12 12 12 12 12 12 12 12 12 12 12 12	0.150	92.6		10									
Particle Size (mm)	0.075	76.9		0									
Remarks :			I		0.075	0.300	0.425	1.18	Parti	cle Size (n	ം ന്	37.5	75
	Remarks	:											
Test Procedure : AS 1289 3.6.1	Test Prod	cedure :		2	AS 1289	3.6.1			1	0			

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory

nh 10/8/15

Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION Client : Advanced Analytical Australia Report No. : R18233 Address : PO Box 153, Hamilton 4007 Job No. : 1529881 Project : **Delivered Samples** Reg'n No. : 15301911 AAA Lab. ID : 24 24/07/2015 Project Ref .: A15/3936/17 Date Received : 31-Jul-15 Sampled By : Clients Rep. SIZE FRACTIONS AS PER AUSTRALIAN STANDARDS AS 1726 Fine Sand Medium Sand Coarse Sand Fine Gravel Medium Gravel Coarse Gravel Cobbles 100 Sieve Percent Size Passing (mm)90 150 75 80 37.5 70 19.0 Percentage Finer 60 9.5 4.75 50 2.36 100.0 40 1.18 99.9 0.600 99.7 30 0.425 99.6 20 0.300 99.1 10 0.150 95.5 0.075 94.1 0 0.425 4.75 0.075 0.150 0.600 2.36 9.5 19.0 0.300 37.5 1.18 75 Particle Size (mm) Remarks : Test Procedure : AS 1289 3.6.1 Prepared by : M Checked by :

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory

NAT

nh 10/8

Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION

Client : Address Project : AAA Lab	: . ID :	Advan PO Bo Deliver 25 23/	ced A x 153 red S /07/20	Analytical 3, Hamilto amples 015	Australia n 4007		Report Job No. Reg'n N Project Date Re Sample	No. : lo. : Ref.: eceived : d By :	R18234 1529881 1530191 A15/3936 31-Jul-15 Clients R	2 6/18 5 ep.
		-	[S Fine Sand	IZE FRACTI Medium Sand	Coarse Sand	R AUSTRAL	Medium Gravel	Coarse Gravel	6 Cobbles
Sieve Size (mm)	Percent Passing		100		1					
150			50							
75			80							
37.5			70							
19.0		5		/				-		
9.5		ge Fine	60	1						
4.75		centa	50							
2.36	100.0	Pel	10							
1.18	99.6		40	1						
0.600	99.2		30							
0.425	97.2		20							
0.300	88.9									
0.150	56.3		10							
0.075	23.8		0							
			0 075	0.150	0.300 0.425 0.600	₽ Par	ticle Size (m	m)	37.5	75
Remarks est Proc Prepared	: cedure : by : M+		/	AS 1289 (3.6.1	Checker	l by · At	0		

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory

Mm 10/8/15

Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION

Client : Address : Project : AAA Lab. ID :		Advanced Analytical Australia PO Box 153, Hamilton 4007 Delivered Samples 26 23/07/2015					Report Job No Reg'n N Project Date Ro Sample	R18235 1529881 15301913 A15/3936/19 31-Jul-15 Clients Rep.			
			Г	S	IZE FRACTI	ONS AS PE			RDS AS 1726	6 Cobbles	
Sieve Size (mm)	Percent Passing		100				File Glave		Coarse Graver	Cobbles	
150			90								
75			80								
37.5			70								
19.0		5									
9.5		ge Fine	60								
4.75		rcenta	50								
2.36	100.0	Ре	10								
1.18	99.9		40								
0.600	99.8		30	-							
0.425	99.6		20								
0.300	98.6										
0.150	30.9		10								
0.075	29.6		0	00	25		36	2	i ni	2	
	0.0 0.1: 0.6					F Par	Particle Size (mm)				
emarks est Proc	: edure :		Α	S 1289 3	3.6.1						
epared	by: MF					Checked	by : D	2			

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory

1m 10/8/15

Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION

Client : Advanced Analytical Australia Report No. : R18236 Address : PO Box 153, Hamilton 4007 Job No. : 1529881 Project : **Delivered Samples** Reg'n No. : 15301914 AAA Lab. ID : 29 23/07/2015 Project Ref.: A15/3936/20 Date Received : 31-Jul-15 Sampled By : Clients Rep. SIZE FRACTIONS AS PER AUSTRALIAN STANDARDS AS 1726 Fine Sand Medium Sand Coarse Sand Fine Gravel Medium Gravel Coarse Gravel Cobbles 100 Sieve Percent Size Passing (mm) 90 150 75 80 37.5 70 19.0 Percentage Finer 60 9.5 4.75 50 2.36 100.0 40 1.18 99.5 0.600 99.2 30 0.425 99.0 20 0.300 98.7 10 0.150 96.5 0.075 27.0 0 0.425 4.75 0.075 0.150 0.600 2.36 9.5 19.0 0.300 37.5 25 1.18 Particle Size (mm) Remarks : **Test Procedure :** AS 1289 3.6.1 Prepared by : NF Checked by :

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL WORLD HEODOMINEED

Nick Farrer Approved Signatory

Mh 10/8/15

Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone: (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION Client : Report No. : Advanced Analytical Australia R18237 Address : PO Box 153, Hamilton 4007 Job No. : 1529881 Project : **Delivered Samples** Reg'n No. : 15301915 AAA Lab. ID : A 23/07/2015 Project Ref.: A15/3936/21 Date Received : 31-Jul-15 Sampled By : Clients Rep. SIZE FRACTIONS AS PER AUSTRALIAN STANDARDS AS 1726 Fine Sand Medium Sand Coarse Sand Fine Gravel Medium Gravel Coarse Gravel Cobbles 100 Sieve Percent Size Passing (mm) 90 150 75 80 37.5 70 19.0 Percentage Finer 60 9.5 4.75 50 2.36 100.0 40 1.18 99.9 0.600 99.6 30 0.425 99.1 20 0.300 92.4 10 0.150 25.3 0.075 4.2 0 0.075 0.425 0.600 4.75 0.150 0.300 2.36 9.5 19.0 37.5 75 1.18 Particle Size (mm) Remarks : Test Procedure : AS 1289 3.6.1 Prepared by : M Checked by : Mm 10/8/15

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory Senior Technical Officer

NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION

Client : Address : Project : AAA Lab. ID :		Advanced Analytical Australia PO Box 153, Hamilton 4007 Delivered Samples B 23/07/2015					Report No. : Job No. : Reg'n No. : Project Ref.: Date Received : Sampled By :		R18238 1529881 15301916 A15/3936/22 31-Jul-15 Clients Rep.	
			[S	IZE FRACTI	ONS AS PER			RDS AS 172	6
Sieve Size (mm)	Percent Passing		100					Medium Graver	Coarse Glaver	Cobbles
150		1	90							
75			80							
37.5			70							
19.0		5						-		
9.5	100.0	ge Fine	60							
4.75	99.8	rcentaç	50							
2.36	99.5	Per								
1.18	99.3		40							
0.600	99.0		30							
0.425	98.7		20				1	-		
0.300	95.7									
0.150	18.4		10							
0.075	2.7		0							
			2000	0.150	0.300 0.425 0.600	۴: Parl	icle Size (mi	m)	37.5	75
emarks	: odure :			AC 4000	2.0.4					
repared	by: M	/	/	45 1289	3.0.1	Checked	by: D	0		

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory

NATA

Mm 1 ol 8/15 Senior Technical Officer

NATA Accred. No. : 1961 Golder Form No. R06 PSD

RL3 - 21/03/2012

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION Client : Advanced Analytical Australia Report No. : R18239 Address : Job No. : PO Box 153, Hamilton 4007 1529881 Project : **Delivered Samples** Reg'n No. : 15301917 AAA Lab. ID : C 23/07/2015 Project Ref .: A15/3936/23 Date Received : 31-Jul-15 Sampled By : Clients Rep. SIZE FRACTIONS AS PER AUSTRALIAN STANDARDS AS 1726 Fine Sand Medium Sand Coarse Sand Fine Gravel Medium Gravel Coarse Gravel Cobbles 100 Sieve Percent Size Passing (mm)90 150 75 80 37.5 70 19.0 Percentage Finer 60 9.5 4.75 50 2.36 100.0 40 1.18 99.4 0.600 99.0 30 0.425 98.5 20 0.300 95.0 10 0.150 14.0 0.075 3.8 0 0.425 0.075 0.600 2.36 4.75 0.150 0.300 9.5 19.0 37.5 75 1.18 Particle Size (mm) Remarks : Test Procedure : AS 1289 3.6.1 Prepared by : M Checked by

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory

LAT

Mm 10/8/15

Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION Client : Advanced Analytical Australia Report No. : R18240 Address : PO Box 153, Hamilton 4007 Job No. : 1529881 Project : **Delivered Samples** Reg'n No. : 15301918 AAA Lab. ID : D 23/07/2015 Project Ref .: A15/3936/24 Date Received : 31-Jul-15 Sampled By : Clients Rep. SIZE FRACTIONS AS PER AUSTRALIAN STANDARDS AS 1726 Fine Sand Medium Sand Coarse Sand Fine Gravel Medium Gravel Coarse Gravel Cobbles 100 Sieve Percent Size Passing (mm)90 150 75 80 37.5 70 19.0 Percentage Finer 60 9.5 4.75 50 2.36 100.0 40 1.18 99.7 0.600 99.0 30 0.425 95.0 20 0.300 79.1 10 0.150 8.5 0.075 4.2 0 0.425 0.075 0.150 0.300 0.600 2.36 4.75 9.5 19.0 1.18 37.5 75 Particle Size (mm) Remarks : Test Procedure : AS 1289 3.6.1 M Prepared by : Checked by :

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory

Mh 10/8/15

Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION

Client : Address Project : AAA Lab	Advanced Analytical Australia PO Box 153, Hamilton 4007 Delivered Samples E 23/07/2015					Report No. : Job No. : Reg'n No. : Project Ref.: Date Received : Sampled By :		R18241 1529881 15301919 A15/3936/25 31-Jul-15 Clients Rep.		
			1	Fine Sand	SIZE FRACTI	ONS AS PE	R AUSTRAL	IAN STANDA	RDS AS 1720	6 Cobbles
Sieve Size (mm)	Percent Passing		100		V					
150			90							
75			80							
37.5			70							
19.0		<u>ب</u>		1						
9.5		je Fine	60	- /						2
4.75		centag	50							
2.36	100.0	Per	10							
1.18	98.5		40	1						
0.600	98.1		30							
0.425	97.0		20							
0.300	92.8									
0.150	55.0		10					1		
0.075	24.1		0							
			1000	0.150	0.300 0.42	Parl	icle Size (mi	n)	37.5	75
emarks	: edure :			1280	361					
repared	by: M	d.	/	10 1209	0.0.1	Checked	by:	P		

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory Mm 10/8/15

Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION

Sieve Percent	26 Cobbles
Sieve Percent ¹⁰⁰	
Size Passing 90	
150	
75 80 80 90 90 90 90 90 90 90 90 90 90 90 90 90	
37.5	
19.0 b	
9.5 E 60	
4.75	
2.36 100.0	
1.18 99.0	
0.600 98.9 30	
0.425 98.5	
0.300 96.7	
0.150 65.7 10 10 10 10 10 10 10 10 10 10 10 10 10	
0.075 18.2 0	
0.075 0.150 0.150 0.425 0.600 0.600 0.600 0.600 0.600 0.600 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.	75
Particle Size (mm)	
Remarks :	
Fest Procedure : AS 1289 3.6.1 Prepared by : M	

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory

WORLAP IN

Mm 10/8/15

Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION

Client : Address Project : AAA Lab	: . ID :	Advance PO Box Delivered H 23/07	ed Analytical 153, Hamilto d Samples /2015	Australia on 4007		Report Job No. Reg'n N Project Date Re Sample	No. : : Ref.: eceived : d By :	R18243 1529881 15301921 A15/3936/27 31-Jul-15 Clients Rep.		
			Eino Sond		ONS AS PER			RDS AS 1726	6	
Sieve Size (mm)	Percent Passing	10		Medium Sand	Coarse Sand	Fine Gravei		Coarse Gravel	Coddles	
150			90							
75			80					2 7	_	
37.5			70							
19.0										
9.5		je Fine	60							
4.75		centag	50							
2.36	100.0	Per								
1.18	98.1		40							
0.600	96.5	3	30							
0.425	90.5		20							
0.300	73.2									
0.150	29.8	1	10							
0.075	15.4		0							
			0.075	0.300 0.425 0.600	۴: Parl	ticle Size (mi	n)	37.5	75	
Remarks	:		40.4000	2.6.1						
repared	by: M		AS 1289	3.6.1	Checked	by: D	8			

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory

TA

Mm 10/8/15

Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION Client : Advanced Analytical Australia Report No. : R18244 Address : PO Box 153, Hamilton 4007 Job No. : 1529881 Project : **Delivered Samples** Reg'n No. : 15301922 AAA Lab. ID : 1 23/07/2015 Project Ref.: A15/3936/28 Date Received : 31-Jul-15 Sampled By : Clients Rep. SIZE FRACTIONS AS PER AUSTRALIAN STANDARDS AS 1726 Fine Sand Medium Sand Coarse Sand Fine Gravel Medium Gravel Coarse Gravel Cobbles 100 Sieve Percent Size Passing (mm)90 150 75 80 37.5 70 19.0 Percentage Finer 60 9.5 4.75 50 2.36 100.0 40 1.18 97.6 0.600 96.9 30 0.425 94.2 20 0.300 84.7 10 0.150 59.4 0.075 17.0 0 0.425 4.75 0.075 0.150 0.300 0.600 2.36 9.5 19.0 37.5 22 1.18 Particle Size (mm) Remarks : Test Procedure : AS 1289 3.6.1 Prepared by : Checked by :

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory

Mh - 10/8/13

Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION

Client : Address : Project : AAA Lab. ID :		Advanced Analytical Australia PO Box 153, Hamilton 4007 Delivered Samples J 24/07/2015					Rep Job Reg Proj Date San	Report No. : Job No. : Reg'n No. : Project Ref.: Date Received : Sampled By :		R18245 1529881 15301923 A15/3936/29 31-Jul-15 Clients Rep.	
			[Fine Sand	Medium Sand	ONS AS PE Coarse Sand	Fine Gra		Medium Gravel	Coarse Grav	26 el Cobbles
Sieve Size (mm)	Percent Passing		100		\square						
150			30								
75			80								
37.5			70								
19.0		L.									
9.5		ge Fine	60								
4.75	100.0	centa	50	/							
2.36	99.8	Per	10								
1.18	99.7		40								
0.600	99.5		30								
0.425	97.9		20								
0.300	88.1										
0.150	41.8		10								
0.075	23.5		0								
				0.150	0.300 0.425 0.600	1.18	2.36	4.75	9.5	37.5	75
						Par	ticle Size	e (mm)		
Remarks	:			10 1000	0.0.1						
repared	by: M			AS 1289	3.6.1	Checked) d by :	16	2		

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory Mh 10/ 5/15

Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION

Client : Adv Address : PO Project : Del AAA Lab. ID : K 2			Advanced Analytical Australia PO Box 153, Hamilton 4007 Delivered Samples K 24/07/2015					No. : : lo. : Ref.: eceived : d By :	R18246 1529881 15301924 A15/3936/30 31-Jul-15 Clients Rep.	
				Fine Sand	Medium Sand	Coarse Sand	Fine Gravel	Medium Gravel	Coarse Gravel	6 Cobbles
Sieve Size (mm)	Percent Passing		100		\square					
150			90							
75			80							
37.5			70							
19.0		5								
9.5		ge Fine	60							
4.75	100.0	rcenta	50							
2.36	99.9	Ре	40				_	F		
1.18	99.8		40							
0.600	99.7		30							
0.425	98.0		20							
0.300	88.9				-					
0.150	33.3		10							
0.075	16.9		0	9 0			oj oj			
				0.073	0.300 0.42! 0.600	°₽ ₽ Par	ticle Size (m	m)		75
Remarks Test Proc	: edure :			AS 1289	3.6.1		~ `			
Prepared	by: M					Checked	by:	P		

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory

M~10/8/15

Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION Client : Advanced Analytical Australia Report No. : R18247 Address : PO Box 153, Hamilton 4007 Job No. : 1529881 Project : **Delivered Samples** Reg'n No. : 15301925 AAA Lab. ID : L 24/07/2015 Project Ref.: A15/3936/31 Date Received : 31-Jul-15 Sampled By : Clients Rep. SIZE FRACTIONS AS PER AUSTRALIAN STANDARDS AS 1726 Fine Sand Medium Sand Coarse Sand Fine Gravel Medium Gravel Coarse Gravel Cobbles 100 Sieve Percent Size Passing (mm) 90 150 75 80 37.5 70 19.0 Percentage Finer 60 9.5 4.75 50 2.36 100.0 40 1.18 98.5 30 0.600 98.0 0.425 94.9 20 0.300 79.7 10 0.150 23.8 0.075 8.5 0 0.425 0.600 4.75 0.075 0.300 2.36 9.5 0.150 19.0 37.5 75 1.18 Particle Size (mm) Remarks : Test Procedure : AS 1289 3.6.1 Checked by : Do Prepared by : M

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory

Mm10/8/15

Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION

Client : Adva Address : PO B Project : Delive AAA Lab. ID : M 24			Advanced Analytical Australia PO Box 153, Hamilton 4007 Delivered Samples M 24/07/2015			Report No. : Job No. : Reg'n No. : Project Ref.: Date Received : Sampled By :		R18248 1529881 15301926 A15/3936/32 31-Jul-15 Clients Rep.		
			Г	Fine Sand	Medium Sand	Coarse Sand	R AUSTRALI	AN STANDAF	RDS AS 172	6 Cobbles
Sieve Size (mm)	Percent Passing		100							CODDIES
150			90							T
75			80							
37.5			70							
19.0		L	/0							
9.5		e Fine	60							
4.75		centag	50							
2.36	100.0	Perc								
1.18	98.7		40							
0.600	98.2		30				-			
0.425	95.4		20							
0.300	81.9		/		-					
0.150	30.0		10							
0.075	14.4		0							
			0.075	0.150	0.300 0.425 0.600	Part	ticle Size (mr	n)	37.5	75
Remarks	:			0.4000						
Prepared	by :		A	AS 1289	3.6.1	Checker	by: A	0		
. opurou	~ 1 . 144					Tonecket	. w)		

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory

Mu 10/8/15

Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION Client : Advanced Analytical Australia Report No. : R18249 Address : PO Box 153, Hamilton 4007 Job No. : 1529881 Project : **Delivered Samples** Reg'n No. : 15301927 AAA Lab. ID : N 24/07/2015 Project Ref.: A15/3936/33 Date Received : 31-Jul-15 Sampled By : Clients Rep. SIZE FRACTIONS AS PER AUSTRALIAN STANDARDS AS 1726 Medium Sand Fine Sand Coarse Sand Fine Gravel Medium Gravel Coarse Gravel Cobbles 100 Sieve Percent Size Passing (mm) 90 150 75 80 37.5 70 19.0 Percentage Finer 60 9.5 4.75 50 100.0 2.36 40 1.18 99.3 0.600 98.6 30 0.425 95.5 20 0.300 86.2 10 0.150 55.4 0.075 17.7 0 0.425 0.600 4.75 2.36 0.075 0.150 0.300 9.5 19.0 37.5 75 1.18 Particle Size (mm) Remarks :

Test Procedure : Prepared by : M AS 1289 3.6.1

Checked by :

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory Mm 10/3/15

D

Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION Client : Advanced Analytical Australia Report No. : R18252 Address : PO Box 153, Hamilton 4007 Job No. : 1529881 Project : **Delivered Samples** Reg'n No. : 15301930 AAA Lab. ID : Q 24/07/2015 Project Ref.: A15/3936/36 Date Received : 31-Jul-15 Sampled By : Clients Rep. SIZE FRACTIONS AS PER AUSTRALIAN STANDARDS AS 1726 Medium Sand Fine Sand Coarse Sand Fine Gravel Medium Gravel Coarse Gravel Cobbles 100 Sieve Percent Size Passing (mm) 90 150 75 80 37.5 70 19.0 Percentage Finer 60 9.5 4.75 50 100.0 2.36 40 1.18 99.8 0.600 99.7 30 0.425 99.5 20 0.300 97.6 10 0.150 77.1 0.075 43.5 0 0.425 4.75 0.075 0.600 2.36 0.300 9.5 19.0 37.5 0.150 75 1.18 Particle Size (mm) Remarks : Test Procedure : AS 1289 3.6.1 Prepared by : M Checked by :

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory

NAT

Mm 10/8/15

Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone: (07) 3840 9500 Email : bnelab@golder.com.au

PARTICLE SIZE DISTRIBUTION Client : Advanced Analytical Australia R18253 Report No. : Address : PO Box 153, Hamilton 4007 Job No. : 1529881 Project : **Delivered Samples** Reg'n No. : 15301931 AAA Lab. ID : R 24/07/2015 Project Ref.: A15/3936/37 Date Received : 31-Jul-15 Sampled By : Clients Rep. SIZE FRACTIONS AS PER AUSTRALIAN STANDARDS AS 1726 Fine Sand Medium Sand Coarse Sand Fine Gravel Medium Gravel Coarse Gravel Cobbles 100 Sieve Percent Size Passing (mm) 90 150 75 80 37.5 70 19.0 Percentage Finer 60 9.5 4.75 50 2.36 100.0 40 1.18 98.0 0.600 97.3 30 0.425 94.4 20 0.300 82.5 10 0.150 30.4 0.075 15.4 0 0.425 4.75 0.300 0.600 2.36 9.5 19.0 37.5 0.075 0.150 25 1.10 Particle Size (mm) Remarks : Test Procedure : AS 1289 3.6.1 Prepared by : M Checked by : Mm 10/8/15

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory

Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer

M 10/8/13 Senior Technical C

Approved Signatory

Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone: (07) 3840 9500 Email : bnelab@golder.com.au

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer

Mm 10/8/13 Approved Signatory

Senior Technical Officer NATA Accred. No.: 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone: (07) 3840 9500 Email : bnelab@golder.com.au

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer Approved Signatory

Senior Technical Officer NATA Accred. No.: 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Mm 1.0/8/15 Senior Technical Officer NATA Accred. No. : 1961

ABN 64 006 107 857 28 Bank Street, West End QLD 4101 PO Box 3427 Sth Brisbane BC QLD 4101 Phone : (07) 3840 9500 Email : bnelab@golder.com.au

Accredited for compliance with ISO/IEC 17025. THIS DOCUMENT SHALL ONLY BE REPRODUCED IN FULL

Nick Farrer

Approved Signatory

Mhr 10/8/15 Senior Techni

Senior Technical Officer NATA Accred. No. : 1961

C.2 PSD Summary and Hydrometer Results

				ABN 64 006 107	857	
	0.11	BR	ISBANE	28 Bank Street,	West End QLD 410	1
	Golder –	LABO	ORATORY	PO Box 3427 Str	Brisbane BC QLD	4101
	ssociates			Phone : (07) 38	10 9500	
				Email : hnelab@	aolder com au	
		TE			goldencom.dd	
Client :	Advanced Analytical Au	ıstralia			Job No. :	1529881
Project :	Delivered Samples				Date Received :	31/07/2015
Project Ref. :	A15/3936				Sampled by :	Clients Rep.
		PART	ICLE SIZE S	UMMARY		
				1	1	
Reg'n No.	Sample ID	Sample No.	Percent Gravel (+ 2 mm)	Percent Sand (2 mm - 0.060 mm)	Percent Silt (0.060 mm - 0.002 mm)	Percent Clay (-0.002 mm)
15301895	2 23/07/2015	1	0	81	1	9
15301896	4 23/07/2015	2	0	60	4	0
15301897	5 23/07/2015	3	0	86	1	4
15301898	6 23/07/2015	4	5	34	39	22
15301899	7 23/07/2015	5	0	71	2	9
15301900	8 23/07/2015	6	0	95		
15301901	9 23/07/2015	7	0	98	10	2
15301902	11 24/07/2015	8	2	72	16	10
15301903	12 23/07/2015	9	0	86	1	4
15301904	13 23/07/2015	10	0	53	4	/
15301905	16 24/07/2015	11	4	66	1/	13
15301906	17 23/07/2015	12	0	94		7
15301907	20 24/07/2015	13	0	43	3	2
15301900	20 24/07/2015	14	0	00	1	3
15301909	21 23/07/2015	10	0	01	7	7
15301911	24 24/07/2015	17	0	6	9	4
15301912	25 23/07/2015	18	0	76	2	4
15301913	26 23/07/2015	19	0	70	3	0
15301914	29 23/07/2015	20	0	73	2	7
15301915	A 23/07/2015	21	0	96	4	
15301916	B 23/07/2015	22	1	96		}
15301917	C 23/07/2015	23	0	96	4	ļ
15301918	D 23/07/2015	24	0	96	4	Ļ
15301919	E 23/07/2015	25	0	76	2	4
15301920	F 23/07/2015	26	0	82	1	8
15301921	H 23/07/2015	27	0	85	1	5
15301922	I 23/07/2015	28	1	82	1	7
15301923	J 24/07/2015	29	0	76	2	4
15301924	K 24/07/2015	30	0	83	1	7
15301925	L 24/07/2015	31	1	90	9)
15301926	M 24/07/2015	32	0	86	1	4
15301927	N 24/07/2015	33	0	82	1	8
15301928	O 24/07/2015	34	2	80	10	8
15301929	P 24/07/2015	35	2	81	10	7
15301930	Q 24/07/2015	36	0	56	4	4
15301931	R 24/07/2015	37	1	84	1	5
Demerler						
Test Procedure	Tes: ΔS1280 3 6 1 9 Δ	\$1289.36.2				
Prepared by :	NF	5 1203.3.0.J		Checked by	DJ	
				and an out of a star		

C-3

C.3 Bulk Sediment Summary

			ABN 64 006 107 857			
		BRISBANE	28 Bank Street, West End QLD 4101			
	Golder	LABORATORY	PO Box 3427 Sth Brisbane BC QLD 4101			
Associates			Phone : (07) 38	340 9500		
			Email : bnelab(Email: bnelab@colder.com.au		
		TEST RES	ULTS			
Official				Internet in the second se	04500004	
Client : Project :	Advanced Analytical Aus Delivered Samples	tralla		JOD NO. : Date Received :	31/07/2015	
Project Ref. :	A15/3936			Sampled by :	Clients Rep.	
		BULK DENSITY S	UMMARY			
Regin No.	Sample ID	Sample No.		Bulk Density (t/m	s)	
	Reginito. Sample ID Sumple No.			Built Benony (and	,	
15301898	6 23/07/2015	4		1.519		
15301902	11 24/07/2015	8		1.669		
15301905	16 24/07/2015	11		1.563		
15301916	B 23/07/2015	22		1.712		
15301928	O 24/07/2015	34	1.684			
15301929	P 24/07/2015	35		1.741		
Remarke :						
Nemarks .						
Prepared by :	NF		Checked by	DJ		

BMT WBM Bangalow	6/20 Byron Street, Bangalow 2479 Tel +61 2 6687 0466 Fax +61 2 66870422 Email bmtwbm@bmtwbm.com.au Web www.bmtwbm.com.au
BMT WBM Brisbane	Level 8, 200 Creek Street, Brisbane 4000 PO Box 203, Spring Hill QLD 4004 Tel +61 7 3831 6744 Fax +61 7 3832 3627 Email bmtwbm@bmtwbm.com.au Web www.bmtwbm.com.au
BMT WBM Denver	8200 S. Akron Street, #B120 Centennial, Denver Colorado 80112 USA Tel +1 303 792 9814 Fax +1 303 792 9742 Email denver@bmtwbm.com Web www.bmtwbm.com
BMT WBM London	International House, 1st Floor St Katharine's Way, London E1W 1AY Email london@bmtwbm.co.uk Web www.bmtwbm.com
BMT WBM Mackay	PO Box 4447, Mackay QLD 4740 Tel +61 7 4953 5144 Fax +61 7 4953 5132 Email mackay@bmtwbm.com.au Web www.bmtwbm.com.au
BMT WBM Melbourne	Level 5, 99 King Street, Melbourne 3000 PO Box 604, Collins Street West VIC 8007 Tel +61 3 8620 6100 Fax +61 3 8620 6105 Email melbourne@bmtwbm.com.au Web www.bmtwbm.com.au
BMT WBM Newcastle	126 Belford Street, Broadmeadow 2292 PO Box 266, Broadmeadow NSW 2292 Tel +61 2 4940 8882 Fax +61 2 4940 8887 Email newcastle@bmtwbm.com.au Web www.bmtwbm.com.au
BMT WBM Perth	Level 3, 20 Parkland Road, Osborne, WA 6017 PO Box 1027, Innaloo WA 6918 Tel +61 8 9328 2029 Fax +61 8 9486 7588 Email perth@bmtwbm.com.au Web www.bmtwbm.com.au
BMT WBM Sydney	Level 1, 256-258 Norton Street, Leichhardt 2040 PO Box 194, Leichhardt NSW 2040 Tel +61 2 8987 2900 Fax +61 2 8987 2999 Email sydney@bmtwbm.com.au Web www.bmtwbm.com.au
BMT WBM Vancouver	Suite 401, 611 Alexander Street Vancouver British Columbia V6A 1E1 Canada Tel +1 604 683 5777 Fax +1 604 608 3232 Email vancouver@bmtwbm.com Web www.bmtwbm.com